Structure solution

Data processing, direct methods, Patterson and Fourier maps

Before you start…

- You need to have at least a pretty good idea of your unit cell contents
 - needed for data scaling
 - also necessary to search for/place atoms
- Elemental analysis gives stoichiometry
 - can be "traditional" elemental analysis
 - for organics, could be deduced from spectroscopic data
- Once we know the stoichiometry, we need to estimate Z
 - symmetry considerations
 - estimate based on average volume per atom
 - based on density measurement
The challenge… and the problem

- We want:
 - electron density distribution of our crystals
 - can be determined by Fourier synthesis of a large number of \(F_{hkl} \) values
- We have:
 - only \(|F_{hkl}|\) can be obtained from intensity measurements
 - the phases are unknown
- We need to recover the lost phase information if we want to solve a crystal structure
 - often referred to as “the phase problem”

Recovering the phase information

- If there were no constraints on the electron density, trying to estimate what the lost phases are would be a hopeless endeavor
- Luckily, we know a few conditions that must be fulfilled:
 - the electron density \textit{must} be positive at all points
 - the electron density should occur in “balls” – the atoms
 - atoms must be placed at least a minimum distance apart
- With this knowledge, it is often possible to recover the missing phase values
Constraints on the electron density

- For a centrosymmetric structure, the phase angle can only be 0 or 180°
 - results in 2^N possible sets of phases for N F’s
 - only one set gives the right answer!

- For a non-centrosymmetric structure, the phase angle can take any value between 0 and 360°
 - in many cases, considering 90° increments works okay
 - still leaves 4^N sets of possible phases for N F’s

- We either need plenty of time and huge computers, or we need to use some more sophisticated methods of guessing!
Phase choice in a centrosymmetric crystal

Electron density equations

- We already established that

\[
\rho(x, y, z) = \frac{1}{V} \sum_{hkl} e^{-i2\pi(hx+ky+lz)} F(hkl)
\]

- This can be rewritten as

\[
\rho(x, y, z) = \frac{1}{V} \sum_{hkl} |F(hkl)| e^{-i2\pi(hx+ky+lz)} \cdot e^{i\phi(hkl)}
\]

\[
= \frac{1}{V} \sum_{hkl} |F(hkl)| \cdot \cos[2\pi(hx+ky+lz) - \phi(hkl)]
\]

- Ultimately, the electron density must be real (physical quantity)!

Friedel’s law

- Under normal circumstances, any X-ray diffraction pattern will be centrosymmetric, regardless of crystal class.
- This is known as **Friedel's law**, which is often written as
 \[I(hkl) = I(\overline{hkl}) \]
- Remember that
 \[|F(hkl)|^2 = A(hkl)^2 + B(hkl)^2 \]
- This leads to
 \[\rho(x, y, z) = \frac{2}{V} \sum_{hkl} |F(hkl)| \cdot \cos[2\pi(hx + ky + lz) - \phi(hkl)] \]

Electron density maps

- Electron density maps are most commonly drawn as contour maps where the lines represent traces of equal electron density:
 - sometimes drawn as projections
 - often drawn as cross sections so that 3D space can be covered
 - the higher the peak, the more electrons the atom has
 - this is what you will be analyzing during a single crystal analysis… but how do we get it?

The Patterson function

- The Fourier transform relationship between crystal and diffraction space was already recognized in 1915, but the lack of computing facilities combined with the phase problem made extensive Fourier calculations unpopular.

- In 1934, Patterson introduced a new Fourier series which could be calculated directly from experimental data:

 - Lack of phases means that this series does not give atomic positions directly.
 - Instead, interatomic distances can be seen in the map.

The series is a convolution of two electron density functions:

\[P(u, v, w) = \frac{2}{V} \sum_{hkl} |F(hkl)|^2 \cdot \cos[2\pi(hu + kv + lw)] \]

- For one dimension:

\[P(u) = \frac{2}{a} \sum_{h} |F(h)|^2 \cdot \cos 2\pi hu \]

- Derived from:

\[A(u) = \int_{0}^{1} \rho(x) \rho(x+u) dx \]
A 1D example

- A Patterson map will *always* be centrosymmetric, regardless of crystal symmetry!
 - this is very different from electron density maps, which will reflect the crystal symmetry precisely
- There will be N^2 peaks in a Patterson map for N atoms
- Peak heights are proportional to $Z \cdot Z'$, so heavy atoms stand out
- Highest peak is *always* at origin

![Image of Patterson map](image)

FIGURE 6.13: Development of a one-dimensional Patterson function (b) for a two-atom structure (a). Note the centrosymmetry of the Patterson function that is lacking in the $\rho(x)$ function.

2D examples

E-values

- Many calculations during structure solution processes are carried out using normalized structure factors (E-values)
- Removes thermal motion and form factor fall off
 - point atom behavior
- $|E(hkl)| = |F(hkl)| / \varepsilon \left[\sum f_j^2(hkl) \right]^{1/2}$
 - where $f_j = f_{j0} \exp[-B_j(sin^2\theta/\lambda^2)]$

|E| 2 gives super sharpened maps
|E| 2 - 1| gives maps without origin peak
Over-sharpening can result in spurious peaks from truncation errors

Different types of Patterson maps

- E-values are frequently used to emphasize features in the map
- |E| 2 and |E| 2 - 1| maps are common
- |E| 2 gives super sharpened maps
- |E| 2 - 1| gives maps without origin peak
- Over-sharpening can result in spurious peaks from truncation errors
Effects of sharpening and origin removal

Figure 12.3. (a) Asymmetric part of the a0/w section of the Patterson map of a natural product. (b) Same section after sharpening and removal of the origin peak.

Harker lines and planes

- Peaks in Patterson maps often concentrate along lines or on planes
- These Harker lines and planes can be used to determine the space group symmetry
 - lines and planes arise from symmetry equivalent atoms
Harker lines

- Example: Space group P\text{m} (space group of the monoclinic system)
 - \(x, y, z\) and \(-y, z\) are symmetry equivalent
 - there will be peaks at 0, 2y, 0 in the Patterson map
 - along the Harker line 0, v, 0

- Example: Space group P\text{c}
 - \(x, y, z\) and \(-y, z+1/2\) are symmetry equivalent
 - Patterson peaks will occur at 0, 2y, 1/2
 - along the Harker line 0, v, 1/2

Harker planes

- Example: Space group P\text{2}_1
 - \(x, y, z\) and \(-x, y+1/2, -z\) are symmetry equivalent
 - peaks at 2x, 1/2, 2z in the Patterson map
 - on the Harker plane u, 1/2, w

- Example: Space group P\text{2}
 - \(x, y, z\) and \(-x, y, -z\) are symmetry equivalent
 - Patterson peaks will occur at 2x, 0, 2z
 - on the Harker plane u, 0, w
Using Patterson maps

- Patterson maps are usually used for heavy atom location
 - heavy atoms stick out
- After a heavy atom is located, phases can be estimated for each reflection from its x, y, z coordinates
 - assumption: Heavy atom dominates scattering
 - use phases to calculate a density map and look for residual peaks to locate lighter atoms
- Does not work well for complicated structures, but is a common approach for small molecules (especially metal oxides etc.)

Locating more atoms

- After locating some initial atoms, Fourier difference maps can be used to find missing atoms
 - this is almost always required for structure completion, regardless of method used
 - all that differs between methods is how the initial atoms are located
- Often referred to as $|F_o| - |F_c|$ map
F_{obs} and F_{calc} maps

- **F_{obs}** maps are calculated using experimental |F| together with phases calculated from some structural model
 - can show peaks that do not correspond to atoms in the current model
 - allows location of missing atoms
- **F_{calc}** maps are constructed from phases and amplitudes that are calculated from a structural model
 - map only has peaks corresponding to atom positions in the model used for calculation
 - not very informative

Difference maps

- |F_{obs}| - |F_{calc}| (or |F_{o}| - |F_{c}|)
- Measured and calculated F’s are combined with calculated phases
- The difference map emphasizes incorrect features of the model used
 - peaks indicate missing atoms
 - valleys correspond to incorrectly placed atoms
Map resolution

- A complete Fourier synthesis would involve all $F(hkl)$ values (summation from $-\infty$ to ∞)
- In reality, only a finite amount of data is available
- Neglecting high resolution data (e.g., $F(hkl)$ with small d-spacings) has two effects:
 - structural detail cannot be seen
 - unwanted ripples in the map can arise due to termination errors

Map resolution – an example

Location of light atoms

- Even in difference maps, light atoms can be difficult to locate
 - depends also on how much lighter than the rest of the structure they are
- In many cases, it is not possible to find hydrogen atoms in electron density maps created from X-ray diffraction data
- Neutrons can help to overcome this problem
 - remember that the neutron form factors do not depend on Z!

An example of a difference map

Isomorphous replacement

- Consider a structure that contains only one heavy atom
 \[F_1 = F_{M1} + F_R \]
- If we can prepare two structures that are identical except for the identity of the heavy atom
 \[F_2 = F_{M2} + F_R \]
- We can calculate a difference map:
 \[F_1 - F_2 = F_{M1} - F_{M2} \]

Isomorphous replacement

- We can locate the heavy atoms using a Patterson map
 - this gives us phase and amplitude of \(F_{M1} \) and \(F_{M2} \)
- We know \(|F_1| \) and \(|F_2| \) from our diffraction experiment
- For a centrosymmetric structure (\(\phi \) can only be 0 or 180°), we can uniquely determine the phases of \(F_1 \) and \(F_2 \)
 - the phase problem reduces to a sign problem (+ or -) in centrosymmetric structures
Example calculation for a centrosymmetric structure

| F_{M2} - F_{M1} | | F_1 | | F_2 | > | F_1 | | Possibilities | Deductions on sign of F_1 and F_2 |
|-----------------|------|-----|-----|-----|-----|-----------------|-----------------|
| (a) +3 | 9 | 12 | yes | (+3)+(+9)=(+12) | + | + |
| (b) -3 | 9 | 6 | no | (-3)+(+9)=(+6) | + | + |
| (c) -3 | 9 | 12 | yes | (-3)+(-9)=(-12) | - | - |
| (d) +3 | 9 | 6 | no | (+3)+(-9)=(-6) | - | - |

Use of isomorphous replacement for macromolecules

- Isomorphous replacement is commonly used for solving protein structures
- Native proteins contain a lot of water
- Replace some water with a heavy atom (e.g., K⁺)
- If things go well, you now have a native protein and a heavy atom derivative that are isomorphous
 - F_{PH} = F_P + F_H

Phase ambiguity with one derivative

FIGURE 6.33. Single isomorphous replacement (SIR) phase–amplitude diagram in the single isomorphous replacement method. $OH(-F_H)$ is the known reversed heavy-atom vector. The triangles OHP_1 and OHP_2 both satisfy (6.81), giving a twofold ambiguity with either OP_1 or OP_2 as the solution for F_H.

Using multiple derivatives

FIGURE 6.34. Multiple isomorphous replacement (MIR) resolution of the phase ambiguity with a second isomorphous heavy-atom derivative PH_2. The determined direction of F_H is near OP_1 and OP_2. In practice, P_{11} and P_{12} rarely coincide, due to inaccuracies in the heavy-atom parameters and lack of complete isomorphism.

What if…?

- What if we cannot prepare several derivatives of a protein?
 - maybe only certain metals will substitute into the structure
- What if our “isomorphous” materials refuse to be isomorphous?
 - changing the metal/cation could significantly alter the structure (even the crystal system)
- What if we can put two different metals in, but they have almost the same number of electrons?
 - or for that matter, we have a structure with neighboring elements to start with?

Anomalous scattering

- The scattering contribution of each atom in the unit cell is represented by its form factor f
 - so far assumed to be a function of scattering angle only
- Form factors consist of several contributions:
 - $f = f_0 + \Delta f' + i\Delta f''$
- f' and f'' show little dependence on θ
- f'' is approximately zero - unless the wavelength is close to the absorption edge of the atom!
 - changes the scattering and thus all phases without disturbing the structure
f’ and f”

The effect of anomalous scattering

<table>
<thead>
<tr>
<th>X-ray wavelength in Å</th>
<th>12.39Å</th>
<th>3.67Å</th>
<th>2.15Å</th>
<th>1.52Å</th>
<th>1.18Å</th>
<th>0.96Å</th>
<th>0.81Å</th>
<th>0.70Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe f”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe f’</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://skuld.bmsc.washington.edu/scatter/AS_form.html

FIGURE 6.45. Anomalous scattering of atom A with respect to the rest of the structure R: (a) normal case—|F(h)| = |F(\bar{h})|; (b) anomalous case—|F(h)| ≠ |F(\bar{h})|.

Phases from anomalous scattering

Common for small organics or other small molecules with little scattering contrast between atoms
- e.g., AlF$_3$: Al$^{3+}$ and F$^-$ have identical electron configurations

Phase probability methods
- makes use of non-negativity constraint on electron density
- actively uses the constraint that the electron density should be pooled in atoms

Uses normalized structure factors

The statistical distribution of E values can yield information about crystal symmetry.

\[
\begin{array}{c}
|E| \quad 0 \quad 1.0 \quad 2.0 \\
\hline
P(E) \quad 1.0 \quad 0.5 \quad 0.5
\end{array}
\]

| | \[E^2\] | \[E\] | \[|E|^2 - 1\] | \|F\|_{hkl} |
|---|---|---|---|---|
| Crystal 1 | 1.00 | 1.00 | 0.96 | A/C |
| Crystal 2 | 0.80 | 0.80 | 0.83 | A/C |

Assigning phases to three reflections will fix the origin

- for non-centrosymmetric structures, a fourth reflection is used to fix the handedness

The reflections that were initially assigned phases can be used as a basis set for the phase probability methods

- use strong reflections for better/more reliable statistics
Triplets

- In 1952, Sayre showed that for centrosymmetric structures
 \[s(hkl) \cdot s(h'k'l') \cdot s(h - h', k - k', l - l') \approx +1 \]
 - \(s(hkl) \) corresponds to the sign (phase angle 0 or 180°) of each hkl-reflection
 - \(\approx \) represents the underlying probabilistic approach and should be read as “is likely to be”

- Three reflections with hkl values related by this relationship are called a triplet
 - the corresponding \(d^* \) vectors form a triangle

- If two signs are known, the third can be deduced

\[\Sigma_2 \] formula

- Hauptman and Karle introduced a more general form of the triplet formula in 1953:
 \[s(hkl) \approx \sum_{h'k'l'} s(h'k'l') \cdot s(h - h', k - k', l - l') \]
 - this formula uses all vector pairs with known signs that fulfill the triplet relationship
 - can be used for probability calculations

- For non-centrosymmetric structures, estimation of relative phases is also possible, but the math gets much more complicated
An example of using the Σ_2 formula

FIGURE 8.8. Direct phase determination for a centrosymmetric crystal structure. Two possible orientations of waves are shown (read vertically). If $|F(200)|$, $|F(300)|$, and $|F(500)|$ are all large, they will make a significant contribution to the electron-density map. If it is known that $|F(200)|$ has a negative sign (relative phase 180°) and $|F(200)|$ has a positive sign (relative phase 0°), then it is most likely, by screening terms, that $|F(500)|$ is negative (relative phase 180°), since this gives a sum with the low negative electron-density map (compare the summations on the left and on the right). The sum electron-density map on the left is better because the background is less negative.